Correction

4 novembre 2008

On cherche à résoudre l'équation différentielle linéaire à coefficients non constants

$$(1 - x^2)y' - xy = 0$$

Supposons que y soit développable en série entière au voisinage de 0. Alors y s'écrit

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$

On suppose en outre que le rayon R de cette série est strictement positif. L'équation différentielle nous donne des relations de récurrence sur les $(a_n)_{n\geq 0}$. En effet, si on dérive y sur son intervalle de convergence et que l'on réinjecte y et y' dans l'équation on obtient :

$$\sum_{n\geq 1} n a_n x^{n-1} - \sum_{n\geq 1} n a_n x^{n+1} - \sum_{n\geq 0} a_n x^{n+1} = 0$$

soit

$$a_1 + (2a_2 - a_0)x + \sum_{n \ge 1} \left[(n+2)a_{n+2}x^{n+1} - na_nx^{n+1} - a_nx^{n+1} \right] = 0$$

Ceci implique que $a_1 = 0$, $2a_2 = a_0$ et $(n+2)a_{n+2} = (n+1)a_n$. Tout d'abord, puisque $a_1 = 0$, il vient que $a_n = 0$ si n est impair. A l'aide d'une récurrence immédiate, on obtient

$$a_{n+2} = \frac{n+1}{n+2} \frac{n-1}{n} \frac{n-3}{n-2} \cdots \frac{1}{2} a_0$$
$$= \prod_{k=0}^{n} \frac{n-k+1}{n-k+2} a_0$$

Essayons de simplifier cette expression. Rappelons que

$$(2n)! = (2n)(2n-1)(2n-2)\cdots(1)$$
$$= 2^{n}n!(2n-1)(2n-3)\cdots(1)$$

Posons n = 2k, alors

$$(n+1)(n-1)(n-3)\cdots(1) = (2k+1)(2k-1)(2k-3)\cdots(1)$$
$$= \frac{(2k+2)!}{2^{k+1}(k+1)!}$$

D'autre part,

$$(n+2)n(n-2)\cdots(2) = (2k+2)(2k)(2k-2)\cdots(2)$$
$$= 2^{k+1}(k+1)!$$

d'où

$$a_{n+2} = \frac{(n+2)!}{[(\frac{n}{2}+1)!]^2 2^{n+2}} a_0$$

Il vient donc que

$$y_{a_0}(x) = \sum_{k=0}^{\infty} a_{2k} z^{2k}$$

C'est alors un exercice de montrer que le rayon de convergence de cette série est R=1.

Cette équation différentielle est linéaire d'ordre 1, l'espace des solutions est donc un espace vectoriel de dimension 1 (le montrer?). La série entière calculée au dessus ne dépend essentiellement que du paramètre a_0 , ainsi a-t-on obtenu toutes les solutions de cette équation au voisinage de 0. En substance $a_0 = y(0)$.

On a fixé notre condition initiale au temps t=0, dans un cadre plus général, le raisonnement est identique. En effet, supposons posée comme condition initiale $a_0=y(t_0)$ pour un certains temps t_0 . Le calcul précédant reste identique, simplement aura-t-on une solution de la forme

$$y(x) = \sum_{k>0} a_{2k} (x - t_0)^{2k}$$

définie sur l'intervalle $]t_0 - 1; t_0 + 1[.$